4. Тест Стьюдента (t-test)

После того как мы проверили незначимость регрессионного уравнения в целом, рассмотрим, как проверять незначимость коэффициентов при отдельных регрессорах. Для этой цели воспользуемся тестом Стьюдента [3].

Проверим незначимость коэффициента при переменной

. Сформулируем гипотезы теста для указанной переменной [файл с данными wage1.gdt]. Они будут выглядеть следующим образом:

Значение оцененного коэффициента при этой переменной находится в столбце «Коэффициент» –

. Для того чтобы вычислить расчетную t-статистикy, необходимо знать значение стандартной ошибки для коэффициента, оно содержится в столбце «Ст. ошибка». Для переменной
стандартная ошибка
. Отсюда можем вычислить
. Для принятия решения о том, можно ли отвергнуть гипотезу H0, сравним значение
с критическим значением статистики
. Примем уровень значимости
. Как уже было сказано, объем выборки составляет 526 наблюдений, то есть n = 526. Число регрессоров в модели составляет 4 (константа тоже регрессор), то есть, k = 4. Отсюда следует, что нужно искать критическое значение из двустороннего распределения Стьюдента
на уровне значимости 5 % (одностороннее распределение 2,5 %) с 522 степенями свободы. Для поиска критического значения из распределения Стьюдента можно воспользоваться статистическими таблицами, например из [7]. Но можно воспользоваться возможностями GRETL. Для этого в основном меню выберем Инструменты – Критические значения.

Рис. 4.1

В открывшемся окне «Критические значения» выберем вкладку, соответствующую распределению Стьюдента, и введем нужные параметры распределения.

Рис. 4.2

Стоит обратить внимание на то, что в GRETL предполагается для распределения Стьюдента вводить не двустороннюю вероятность, а только правостороннюю вероятность, то есть в нашем случае это 2,5 %. После нажатия клавиши ОК получаем искомое критическое значение

.

Рис. 4.3

После этого сравниваем расчетное и критическое значение статистик для переменной

. В нашем случае
(|11,68 | > 1,96), отсюда можно сделать вывод, что гипотеза H0 отвергается, то есть можно говорить о том, что регрессор
значим.

Рассмотренный способ проверки гипотезы незначимости коэффициента при отдельном регрессоре позволяет соотнести теоретические знания о проверке незначимости с практикой. Однако ту же самую процедуру можно несколько упростить. Обратим внимание, что в столбце t-статистика для всех переменных уже указаны расчетные значения статистики. Так, например, для переменной

указано полученное нами значение
. Это несколько сокращает процедуру проверки, однако сравнение расчетного и критического значения t-статистики все же приходится проделывать самостоятельно.

Существует еще более простой и быстрый способ проверки незначимости коэффициента.

В рассматриваемом примере p-значение переменной

составляет
, то есть практически равно 0. В этом случае, p-значение переменной
меньше заданного уровня значимости
. Это значит, что можно отвергнуть гипотезу H0, то есть коэффициент при регрессоре
значим.

Аналогичную проверку незначимости мы можем провести для коэффициентов остальных регрессоров. На 5 %-ном уровне значимости можно утверждать, что коэффициент при

и константа – значимы, коэффициент при
на 5 %-ном уровне не значим, однако он является значимым на 10 %-ном уровне значимости.

В программе GRETL предусмотрена визуализация значимости коэффициентов при отдельных регрессорах на разных уровнях значимости. Для этого справа от каждого регрессора расположены звездочки:

• Наличие одной звездочки говорит о том, что коэффициент значим только на 10 %-ном уровне.

• Наличие двух звездочек говорит о значимости коэффициента на 5 %-ном уровне.

• Три звездочки информируют о значимости коэффициента на 1 %-ном уровне.

• Отсутствие звездочек говорит о незначимости коэффициента на 10 %-ном уровне.

Мы проверили незначимость коэффициентов при всех регрессорах, включенных в модель. Если мы хотим ориентироваться на 5 %-ный уровень значимости, то нужно удалить переменную

с незначимым коэффициентом. Для того чтобы это сделать в окне с построенной моделью (в нашем случае это окно Модель 1, но, вообще говоря, это может быть Модель № в зависимости от того, сколько вы моделей построили до этого), выбираем пункт меню Правка – Изменить модель.

Рис. 4.4

В открывшемся окне выделяем переменную

и красной стрелкой удаляем ее из независимых переменных.

Рис. 4.5

Обновленная модель представлена на рис. 4.6.

Рис. 4.6

Как видно из распечатки, все коэффициенты регрессии в обновленной модели значимы на 1 %-ном уровне (следовательно, и на 5 %-ном уровне они тоже значимы). Возможности t-теста не ограничиваются только проверкой незначимости коэффициентов при регрессорах. На самом деле проверка незначимости коэффициента является частным случаем проверки равенства коэффициента при регрессоре конкретному значению [2, 3].

Разберем это на примере. Проверим, а можем ли мы округлить коэффициент при переменной

до 0,2. Сформулируем гипотезы для проверки этого предположения:

Для проверки такого рода гипотезы уже нельзя воспользоваться рассчитанным в GRETL значением t-статистики, а также р-значением, поэтому вычислим значение t-статистики для переменной

самостоятельно:
. Значение критической точки Стьюдента составит
.

Сравниваем расчетную статистику и критическую и получаем, что

, то есть (|–0,56 | < 1,96). В этом случае, мы можем принять нулевую гипотезу и округление коэффициента перед
до 0,2 будет статистически корректно. Аналогичные гипотезы мы можем проверять для остальных коэффициентов регрессии.

Проверить, может ли коэффициент при регрессоре равняться заданному значению, позволяет также доверительный интервал [2, 3].

Используя данные из распечатки на рис. 4.6, можно построить доверительные интервалы для всех коэффициентов самостоятельно либо воспользоваться встроенной функцией GRETL для построения доверительного интервала.

Для этого в окне модели вызовем пункт меню Анализ – Доверительные интервалы для коэффициентов.

Рис. 4.7

Результатом работы данной функции является следующее окно (рис. 4.8).

Рис. 4.8

Истинное значение коэффициента при переменной

с вероятностью 95 % накрывается интервалом
.

Нужно обратить внимание на то, что с помощью доверительного интервала можно проверять незначимость коэффициентов при регрессорах. В случае, если доверительный интервал накрывает 0 (то есть истинное значение коэффициента может принимать нулевое значение), можно сделать вывод о том, что коэффициент не значим.

Еще одна возможность для проверки гипотез с помощью теста Стьюдента – это односторонние гипотезы [2, 3].

Разберем, как проводится односторонний t-тест на примере. Проверим, верно ли, что коэффициент перед переменной

можно считать большим 0,2.

Значение расчетной статистики для этого теста будет такое же, как и в предыдущем тесте (проверка равенства коэффициента заданному значению). Критическая точка составит

. Сравнивая расчетное значение статистики с критическим, получаем
, то есть –0,56 < 1,65. Значит, гипотеза H0 принимается.

По сути, все разновидности t-теста и построение доверительного интервала для коэффициента – это две стороны одной медали. Полезные результаты можно получать и тем и другим способом, выбор способа ответа на вопросы о незначимости коэффициента при регрессоре и соотношения коэффициента регрессора с заданным значением возлагается на исследователя.

Данный текст является ознакомительным фрагментом.